
User’s Guide
Version 1

Embedded Target for the
TI TMS320C2000™ DSP Platform

For Use with Simulink®

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for the TI TMS320C2000 DSP Platform User’s Guide
 COPYRIGHT 2003 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 2003 Online only New for Version 1.0 (Release 13SP1+)

i

Contents

1
Getting Started

What Is the Embedded Target for the TI TMS320C2000
DSP Platform? . 1-2

Suitable Applications . 1-2

Setting Up and Configuring . 1-3
Platform Requirements — Hardware and Operating System . 1-3
Supported Hardware for Targets . 1-3
Software Requirements . 1-4
Verifying the Configuration . 1-5

Embedded Target for TI C2000 and
Code Composer Studio . 1-7

Default Project Configuration . 1-7

Scheduling and Timing . 1-8

Overview of Creating Models for Targeting 1-10
Online Help . 1-10
Notes About Selecting Blocks for Your Models 1-11
Setting Simulation Parameters . 1-12
Building Your Model . 1-12

Using the c2000lib Blockset . 1-14
Hardware Setup . 1-14
Starting the c2000lib Library . 1-14
Setting Up the Model . 1-16
Adding Blocks to the Model . 1-24
Generating Code from the Model . 1-28
Creating Code Composer Studio Projects Without Loading . . 1-29

ii

2
Using the IQmath Library

About the IQmath Library . 2-2
Common Characteristics . 2-2

Fixed-Point Numbers . 2-3
Signed Fixed-Point Numbers . 2-3
Q Format Notation . 2-4

Building Models . 2-7
Converting Data Types . 2-7
Using Sources and Sinks . 2-7
Choosing Blocks to Optimize Code . 2-7

3
Block Reference

Blocks — By Library . 3-2
C2400 DSP Chip Support Library (c2400dspchiplib) 3-2
C2800 DSP Chip Support Library (c2800dspchiplib) 3-2
Target Preferences Library (c2000tgtpreflib) 3-3
C28x IQmath Library (tiiqmathlib) . 3-3

Blocks — Alphabetical List . 3-5

Index

1
Getting Started

This chapter describes how to use the Embedded Target for TI C2000 DSP to create and execute
applications on Texas Instruments C2000 development boards. To use the targeting software, you
should be familiar with using Simulink to create models and with the basic concepts of Real-Time
Workshop automatic code generation. To read more about Real-Time Workshop, refer to your
Real-Time Workshop documentation.

What Is the Embedded Target for the
TI TMS320C2000 DSP Platform?
(p. 1-2)

Introduces the Embedded Target for TI C2000 DSP and
describes some of its features and supported hardware

Setting Up and Configuring (p. 1-3) Describes the software and hardware required to use the
Embedded Target for the TI TMS320C2000 DSP Platform
and how to set them up

Embedded Target for TI C2000 and
Code Composer Studio (p. 1-7)

Information about Code Composer Studio

Scheduling and Timing (p. 1-8) Information about C2000 scheduling

Overview of Creating Models for
Targeting (p. 1-10)

Summary of steps required to create models for your
target

Using the c2000lib Blockset (p. 1-14) Example of creating a model and targeting hardware

1 Getting Started

1-2

What Is the Embedded Target for the TI TMS320C2000 DSP
Platform?

The Embedded Target for the TI TMS320C2000™ DSP Platform integrates
Simulink® and MATLAB® with Texas Instruments eXpressDSP™ tools. You
can use this product to develop and validate digital signal processing and
control designs from concept through code. The Embedded Target for the TI
TMS320C2000 DSP Platform uses C code generated by Real-Time Workshop®
and your TI development tools to generate a C language real-time
implementation of your Simulink model. The Real-Time Workshop builds a
Code Composer Studio® project from the C code. You can compile, link,
download, and execute the generated code on an eZdsp™ DSP board from
Spectrum Digital.

Suitable Applications
The Embedded Target for the TI TMS320C2000 DSP Platform enables you to
develop digital signal processing and control applications that have any of the
following characteristics:

• Fixed-point arithmetic

• Single rate

• Multirate

• Multistage

• Adaptive

• Frame based

Setting Up and Configuring

1-3

Setting Up and Configuring

Platform Requirements — Hardware and Operating
System
To run the Embedded Target for the TI TMS320C2000 DSP Platform, your
host PC must meet the following hardware configuration:

• Intel Pentium or Intel Pentium processor-compatible PC

• 64 MB RAM (128 MB recommended)

• 20 MB hard disk space available after installing MATLAB

• Color monitor

• One parallel printer port or one USB port to connect your target board to
your PC

• CD-ROM drive

• Windows NT 4.0 Server or Workstation, Windows 2000, or Windows XP

You may need additional hardware, such as signal sources and generators,
oscilloscopes or signal display systems, and assorted cables to test and evaluate
your application on your hardware.

Supported Hardware for Targets
The Embedded Target for TI C2000 DSP supports the following boards:

• TMS320F2812 eZdsp DSK — the F2812eZdsp DSP Starter Kit

• TMS320LF2407 eZdsp DSK — the LF2407eZdsp DSP Starter Kit

Spectrum Digital DSP Starter Kits (DSKs) help developers create digital signal
processing applications for the Texas Instruments DSP chips. You can create,
test, and deploy your processing software and algorithms on the target
processor without the difficulties inherent in starting with the digital signal
processor itself and building the support hardware to test the application on
the processor. Instead, the development board provides the input hardware,
output hardware, timing circuitry, memory, and power for the digital signal
processor. Texas Instruments provides the software tools, such as the C
compiler, linker, assembler, and integrated development environment, for PC
users to develop, download, and test their algorithms and applications on the
processor.

1 Getting Started

1-4

Refer to the documentation provided with your hardware for information on
setting up and testing your target board.

Note You do not need to change any jumpers from their factory defaults on
either the LF2407 or F2812 target board.

Software Requirements

MathWorks Software
For up-to-date information about other MathWorks software you need to use
the Embedded Target for the TI TMS320C2000 DSP Platform, refer to the
MathWorks Web site — http://www.mathworks.com. Check the Product area
for the Embedded Target for the TI TMS320C2000 DSP Platform.

For information about the software required to use the MATLAB Link for Code
Composer Studio Development Tools, refer to the Products area of the
MathWorks Web site — http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks, Embedded Target
for the TI TMS320C2000 DSP Platform requires that you install the Texas
Instruments development tools and software listed in the following table.
Installing Code Composer Studio IDE Version 2.12 or 2.2 for the C28x series
installs the software shown.

Required TI Software for Targeting Your TI C2000 Hardware

Installed Product Additional Information

Assembler Creates object code (.obj) for C2000 boards from
assembly code

Compiler Compiles C code from the blocks in Simulink
models into object code (.obj). As a byproduct of the
compilation process, you get assembly code (.asm) as
well.

Setting Up and Configuring

1-5

In addition to the TI software, you need one or more TMS320F2812 eZdsp DSP
Starter Kits or TMS320LF2407 eZdsp DSP Starter Kits from Spectrum Digital.

Verifying the Configuration
To determine whether the Embedded Target for the TI TMS320C2000 DSP
Platform is installed on your system, type this command at the MATLAB
prompt.

c2000lib

When you enter this command, MATLAB displays the C2000 block library
containing the following libraries that comprise the C2000 library:

• C2800 DSP Core Support

• C2400 DSP Core Support

• Target Preferences

• C28x IQmath library

If you do not see the listed libraries, or MATLAB does not recognize the
command, you need to install the Embedded Target for the TI TMS320C2000
DSP Platform. Without the software, you cannot use Simulink and Real-Time
Workshop to develop applications targeted to the TI boards.

Linker Combines various input files, such as object files
and libraries

Code Composer
Studio

Texas Instruments integrated development
environment (IDE) that provides code debugging
and development tools

TI C2000
miscellaneous
utilities

Various tools for developing applications for the
C2000 digital signal processor family

Code Composer
Setup Utility

Program you use to configure your CCS installation
by selecting your target boards or simulator

Required TI Software for Targeting Your TI C2000 Hardware (Continued)

Installed Product Additional Information

1 Getting Started

1-6

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that CCS is installed on your machine, enter

ccsboardinfo

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine, in
a form similar to the following listing.

Board Board Proc Processor Processor
Num Name Num Name Type
--- ---------------------------------- ---
1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For the
Embedded Target for the TI TMS320C2000 DSP Platform to operate with CCS,
the CCS IDE must be able to run on its own.

Note For any model to work in the targeting environment, you must select
the discrete-time solver in the Solver options pane of the Simulink
Simulation Parameters dialog box. Targeting does not work with
continuous-time solvers.

Embedded Target for TI C2000 and Code Composer Studio

1-7

Embedded Target for TI C2000 and Code Composer Studio
Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE) . Used in combination with your Embedded Target for TI C2000 DSP and
Real-Time Workshop, CCS provide an integrated environment that, once
installed, requires no coding.

Executing code generated from Real-Time Workshop on a particular target
requires that Real-Time Workshop generate target code that is tailored to the
specific hardware target. Target-specific code includes I/O device drivers and
interrupt service routines (ISRs). Generated source code must be compiled and
linked using CCS so that it can be loaded and executed on a TI DSP. To help
you to build an executable, the Embedded Target for TI C2000 DSP uses the
MATLAB Link for Code Composer Studio to start the code building process
within CCS. Once you download your executable to your target and run it, the
code runs wholly on the target. You can access the running process only from
the CCS debugging tools or across a link using MATLAB Link for Code
Composer Studio Development Tools.

Default Project Configuration
CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation. The
models you build with the Embedded Target for TI C2000 DSP use a custom
configuration that provides a third combination of build and optimization
settings — custom_MW.

Default Build Options in the custom_MW Configuration

The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options. custom_MW uses
Function(-o2) for the compiler optimization level.

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

1 Getting Started

1-8

Scheduling and Timing
A timer interrupt is used to run generated code in real time on the C2000 DSP.
Each iteration of the model solver is run after an interrupt has been posted and
serviced by an interrupt service routine (ISR). The code generated for the C28x
uses CPU_timer0. The code generated for the C24x uses an Event Manager (EV)
timer, which you can select.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set up
to ensure the desired rate as follows:

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812 or 216-1 for the LF2407), the CPU clock speed and for the
LF2407, the TimerClockPrescaler setting in the appropriate Target
Preferences block. The CPU clock speed for the LF2407 is 40 MHz and for the
F2812 it is 150 MHz.

Maximum Sample Times

TimerClockPrescaler
Setting

C24x Maximum
Sample Time
(seconds)

C28x Maximum
Sample Time
(seconds)

1 0.0016 0.0004

2 0.0032 N/A

4 0.0065 N/A

8 0.0131 N/A

16 0.0262 N/A

32 0.0524 N/A

Base Rate Sample Time Timer Period
CPU Clock Speed()

TimerClockPrescaler
--- 
 
---=

Scheduling and Timing

1-9

64 0.1048 N/A

128 0.2097 N/A

Maximum Sample Times (Continued)

TimerClockPrescaler
Setting

C24x Maximum
Sample Time
(seconds)

C28x Maximum
Sample Time
(seconds)

1 Getting Started

1-10

Overview of Creating Models for Targeting
After you have installed the supported development board, start MATLAB. At
the MATLAB command prompt, type

c2000lib

This opens the c2000lib Simulink blockset that includes libraries containing
blocks predefined for C2000 input and output devices. As needed, add the
blocks to your model. See “Using the c2000lib Blockset” on page 1-14 for an
example of how to use this library.

Create your real-time model for your application the way you create any other
Simulink model — by using standard blocks and C-MEX S-functions. Select
blocks to build your model from the following sources:

• Appropriate Target Preferences library block, to set preferences for your
target and application

• From the appropriate libraries in the c2000lib block library, to handle input
and output functions for your target hardware

• From Real-Time Workshop

• From Fixed-Point Blockset

• Discrete time blocks from Simulink

• From any other blockset that meets your needs and operates in the discrete
time domain

Online Help
To get general help for using the Embedded Target for the TI TMS320C2000
DSP Platform, use the help feature in MATLAB. At the command prompt, type

help tic2000

to get a list of the functions and block libraries included in the Embedded
Target for the TI TMS320C2000 DSP Platform. Or select Help ->Full Product
Family Help from the menu bar in the MATLAB desktop. When you see the
Table of Contents in Help, select Embedded Target for the TI TMS320C2000
DSP Platform.

Overview of Creating Models for Targeting

1-11

Notes About Selecting Blocks for Your Models
Many blocks in the blocksets communicate with your MATLAB workspace.
These blocks also generate code, but they do not work on the target as they do
on your desktop — in general, they slow your signal processing application
without adding instrumentation value.

For this reason, The MathWorks recommends that you avoid using certain
blocks, such as the Scope block and some source and sink blocks, in Simulink
models that you use on Embedded Target for TI C2000 DSP targets. The next
table presents the blocks you should not use in your target models.

Block Name/Category Library

Scope Simulink, DSP Blockset

To Workspace Simulink

From Workspace Simulink

Spectrum Scope DSP Blockset

To File Simulink

From File Simulink

Triggered to Workspace DSP Blockset

Signal To Workspace DSP Blockset

Signal From Workspace DSP Blockset

Triggered Signal From
Workspace

DSP Blockset

To Wave Device DSP Blockset

From Wave Dvice DSP Blockset

To Wave File DSP Blockset

From Wave File DSP Blockset

1 Getting Started

1-12

Setting Simulation Parameters
To set the simulation parameters manually, with your model open, select
Simulation Parameters from the Simulink option. From this dialog, click
Real-Time Workshop. You must specify the appropriate version of the system
target file and template makefile. For the Embedded Target for the TI
TMS320C2000™ DSP Platform, in the Real-Time Workshop pane of the
dialog, specify

ti_C2000_grt.tlc

or, optionally, select

ti_C2000_ert.tlc

to select the correct target file or click Browse and select from the list of
targets. The associated template file name is automatically filled in.

A Generic Real-Time (GRT) target is the target configuration that generates
model code for a real-time system as if the resulting code was going to be
executed on your workstation. An Embedded Real-Time (ERT) target is the
target configuration that generates model code for execution on an
independent embedded real-time system. This option requires Real-Time
Workshop Embedded Coder.

You must also specify discrete time by selecting Fixed-step and discrete (no
continuous states) from the Solver panel of the Simulation Parameters
dialog. After you select Fixed-step, select SingleTasking as the Mode
parameter. TI C2000 targets do not support multitasking.

When you drag a Target Preferences block into your model, you are given the
option to set basic simulation parameters automatically. Note that this option
does not appear if the Simulation Parameters dialog is open when you drag
the Target Preferences block into the model.

Building Your Model
With this configuration, you can generate a real-time executable and download
it your TI development board by clicking Build on the Real-Time Workshop
pane. Real-Time Workshop automatically generates C code and inserts the I/O
device drivers as specified by the hardware blocks in your block diagram, if
any. These device drivers are inserted in the generated C code as inlined
S-functions. For information about inlining S-functions, refer to your target

Overview of Creating Models for Targeting

1-13

language compiler documentation. For a complete discussion of S-functions,
refer to your documentation about writing S-functions.

Note To build, load, and run code successfully on your target board,
MATLAB must be able to locate that board in your system configuration.
Make sure that the Board Name in your Code Composer Studio setup and the
DSPBoardLabel in the Target Preference Block in your model match exactly.

During the same build operation, block parameter dialog entries are combined
into a project file for CCS for your TI C2000 board. If you selected the Build
and execute build action in the Target Preferences block, your makefile
invokes the TI cross-compiler to build an executable file that is automatically
downloaded via the parallel port to your target. After downloading the
executable file to the target, the build process runs the file on the board’s DSP.

1 Getting Started

1-14

Using the c2000lib Blockset
This section uses an example to demonstrate how to create a Simulink model
that uses the Embedded Target for TI C2000 DSP blocks to target your board.
The example creates a model that performs PWM duty cycle control via pulse
width change. It uses the C2812 ADC block to sample an analog voltage and
the C2812 PWM block to generate a pulse waveform. The analog voltage
controls the duty cycle of the PWM and you can observe the duty cycle change
on the oscilloscope. This model is also provided in the Demos library. Note that
the model in the Demos library also includes a model simulation.

Hardware Setup
The following hardware is needed for this example:

• Spectrum Digital eZdsp F2812

• Function generator

• Oscilloscope and probes

Connect the hardware as follows:

1 Connect the function generator output to the ADC input ADCINA0 on the
eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of the
oscilloscope.

Starting the c2000lib Library
At the MATLAB prompt, type

c2000lib

to open the c2000lib library blockset, which contains libraries of blocks
designed for targeting your board.

Using the c2000lib Blockset

1-15

The libraries are

• C2800 DSP Core Support (c2800dsplib) — Blocks to configure the codec on
the F2812 eZdsp DSK or on the F2812 DSP

• C2400 DSP Core Support (c2400dsplib) — Blocks to configure the codec on
the LF2407 eZdsp DSK or on the LF2407 DSP

• Target Preferences (c2000tgtpreflib) — Blocks to specify target
preferences and options. You do not connect this block to any other block in
your model.

• C28x IQMath Library (tiiqmathlib) — Math blocks for use with C2000
targets

• Info block — Online help

• Demos block — Demos window

1 Getting Started

1-16

For more information on each block, refer to its reference page.

Setting Up the Model
Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1 Select New from the File menu to create a new Simulink model.

2 Double-click the Target Preferences library in c2000lib to open it.

3 Drag the F2812 eZdsp block into your new model.

The following dialog appears, asking if you want preferences to be set
automatically.

F2812 eZdsp

Using the c2000lib Blockset

1-17

Click Yes to allow automatic setup. The following simulation parameters are
set:

The default Target configuration - System target file is ti_c2000.grt.tlc,
because you need to purchase and install the optional Real-Time Workshop
Embedded Coder to use the ti_c2000_ert.tlc.

Note One Target Preference block must be in each target model at the top
level. It does not connect to any other blocks, but stands alone to set the target
preferences for the model.

Tab Page Field Setting

Solver Stop time inf

Solver Type Fixed-step
discrete

Workspace I/O Save to workspace - Time off

Workspace I/O Save to workspace - Output off

Advanced Production hardware
characteristics

Microprocessor

Advanced Number of bits for C 'char' 16

Advanced Number of bits for C 'short' 16

Advanced Number of bits for C 'int' 16

Advanced Number of bits for C 'long' 32

Real-Time
Workshop

Target configuration - System
target file

ti_c2000_grt.tlc

Real-Time
Workshop

Target configuration - Template
makefile

ti_c2000_grt.tmf

1 Getting Started

1-18

Select Simulation Parameters from the Simulation menu to verify and set
the simulation parameters for this model. Parameters you set in this dialog
belong to the model you are building. They are saved with the model and
stored in the model file. Refer to your Simulink documentation for
information on the Simulation Parameters dialog.

Use the Real-Time Workshop pane of the Simulation Parameters dialog
to set options for the real-time model. Refer to your Real-Time Workshop
documentation for detailed information on the Real-Time Workshop pane
options.

The Real-Time Workshop categories are

- Target configuration — Real-Time Workshop general configuration
options

- TLC debugging — Real-Time Workshop general debugging options

- General code generation options — Real-Time Workshop general code
generation options

- ERT code generation options — Target-specific run-time options

Using the c2000lib Blockset

1-19

The ERT options apply to the embedded targets and appear when you select
an ERT TI C2000 target, such as ti_c2000_ert.tlc, as the System target
file. The ERT file requires Real-Time Workshop Embedded Coder.

Target configuration — Use the selections in this category to specify your
target.

- System target file. Clicking Browse opens the Target File Browser
where you select ti_c2000_grt.tlc or ti_c2000_ert.tlc. When you
select your target configuration, Real-Time Workshop chooses the
appropriate system target file, template makefile, and make command. You
can also enter the target configuration filename, and Real-Time Workshop
will fill in the Template makefile and Make command selections.

- Template makefile. Set the Template makefile option to
ti_c2000_grt.tmf or ti_c2000_ert.tmf when you build your application
for the C2000 target. If the template makefile shown in the option is not
the one for the selected System target file, click Browse to open the list
of available system target files and select the correct file from the list.
Real-Time Workshop then selects the appropriate template makefile.

- Make command. When you generate code from your digital signal
processing application, use the standard command make_rtw as the Make
command. On Configuration in the Target configuration category,
enter make_rtw for the Make command.

- Generate code only. This option does not apply to targeting with the
Embedded Target for TI C2000 DSP. To generate source code without
building and executing the code on your target, in the Target Preference
BuildOptions — RunTimeOptions for BuildAction, select Generate
code only.

TLC Debugging — Real-Time Workshop uses the Target Language
Compiler (TLC) to generate C code from your model.rtw file. The TLC
debugger helps you identify programming errors in your TLC code. Options
in this pane are specific to TLC debugging. For details about using the
options in TLC debugging, refer to the section “About TLC Debugger” in your
Real-Time Workshop documentation.

For this example, do not select any of the TLC Debugging options.

1 Getting Started

1-20

General code generation options — Real-Time Workshop uses the general
code generation options during the build process to tailor the generated code
to your needs. For more information about using these General code
generation options, refer to your Real-Time Workshop documentation.

For this example, use the default settings of the General code generation
options.

ERT code generation options — Real Time Workshop uses the ERT code
generation options to customize your embedded real-time code generation.
See the Real-Time Workshop Embedded Coder documentation for
information.

For this example, use the default settings of the ERT code generation
options. Verify that the following options, which apply to the C2000 targets,
are set appropriately:

- Integer code only — Check this box to ensure that no floating-point data
is used, because the C2000 targets do not support floating-point data.
Using floating-point data on a C2000 target generates an error.

- Generate an example main program — This box does not affect the
Embedded Target for C2000 product because it generates its own main
program.

- Target floating-point math environment — Verify that this box is not
checked. It does not apply to the Embedded Target for TI C2000 DSP.

4 Set the Target Preferences by double-clicking on the F2812 eZdsp block and
adjust these parameters. The default values are also shown in the figure
below. For descriptions of these fields, see the F2812 eZdsp reference page.

Build Options

Subfield Field Setting

Compiler Options CompilerVerbosity Verbose

KeepASMFiles False

OptimizationLevel Function(-o2)

SymbolicDebugging Yes

Using the c2000lib Blockset

1-21

Linker Options CreateMAPFile True

KeepOBJFiles True

LinkerCMDFile Full_memory_map

RunTime Options BuildAction Build_and_execute

OverrunAction Continue

CCSLink Options

Field Setting

CCSHandleName CCS_Obj

ExportCCSHandle True

CodeGeneration Options

Subfield Field Setting

Scheduler Timer CPU_timer0

TimerClockPrescaler 1

DSPBoard Options

Subfield Field Setting

DSP Board Label DSPBoardLabel F2812 PP Emulator

DSP Chip DSPChipLabel TI TMS320C2812

Build Options (Continued)

Subfield Field Setting

1 Getting Started

1-22

eCAN BitRatePrescaler 10

EnhancedCANMode True

SAM Sample_one_time

SBJ Only_falling_edges

SJW 2

SelfTestMode False

TSEG1 8

TSEG2 6

DSPBoard Options (Continued)

Subfield Field Setting

Using the c2000lib Blockset

1-23

1 Getting Started

1-24

Adding Blocks to the Model

1 Double-click the C2800 DSP Chip Support Library to open it.

2 Drag the C28x ADC block into your model. Double-click the ADC block in the
model and set the Module to A, select only ADCINA0, and enter a Sample
time of 64/80000. Refer to the C28x ADC reference page for information on
these fields.

Using the c2000lib Blockset

1-25

3 Drag the C28x PWM block into your model. Double-click the PWM block in
the model and set the following parameters. Refer to the C28x PWM
reference page for information on these fields.

Field Parameter

Module A

Waveform period source Specify via dialog

Waveform period 64000

Waveform type Asymmetric

Enable PWM1/PWM2 selected

Pulse width source Input port

Show additional parameters selected

1 Getting Started

1-26

PWM1 control logic Active high

PWM2 control logic Active low

Use deadband for PWM1/PWM2 selected

Deadband prescaler 16

Deadband period 12

Field Parameter

Using the c2000lib Blockset

1-27

4 Type Simulink at the MATLAB command line to start the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click on the Gain block in the model and set the
following parameters.

Field Parameter

Gain 30

Multiplication Element-wise(K.*u)

Show additional parameters selected

Parameter data type mode Same as input

Output data type mode Specify via dialog

Output data type uint(16)

Round integer calculations toward Floor

Sample time -1

1 Getting Started

1-28

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block as shown.

Generating Code from the Model
This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
your Real-Time Workshop documentation.

Using the c2000lib Blockset

1-29

You start the automatic code generation process from the Simulink model
window by clicking Build in the Real-Time Workshop pane of the Simulation
Parameters dialog. Other ways of starting the code generation process are by
using the Build all button on the toolbar of your model, or by using the
keyboard shortcut, Ctrl-B, while your model is open and in focus.

The code building process consists of these tasks:

1 Real-Time Workshop invokes the function make_rtw to start the Real-Time
Workshop build procedure for a block diagram. make_rtw invokes the Target
Language Compiler to generate the code and then invokes the
language-specific make procedure.

2 gmake builds file modelname.out. Depending on the build options you select
in the Simulation Parameters dialog, gmake can initiate the sequence that
downloads and executes the model on your TI target board.

Creating Code Composer Studio Projects Without
Loading
To create projects in CCS without loading files to your target, follow these
steps:

1 In the Real-Time Workshop pane in the Simulation Parameters dialog,
select ti_c2000.tlc as the system target file.

2 Select Create_CCS_Project for the BuildAction in the Target Preferences
block. Note that the Build and Build_and_execute options create CCS
projects as well.

3 Set the other Target Preferences options, including those for CCSLink. On
the Real-Time Workshop pane of the Simulation Parameters dialog, click
Build to build your new CCS project.

Real-Time Workshop and the Embedded Target for TI C2000 DSP generate
all the files for your project in CCS and create a new project in the IDE. Your
new project is named for the model you built.

In CCS you see your project with the files in place in the directory tree.

1 Getting Started

1-30

2
Using the IQmath Library

About the IQmath Library (p. 2-2) Introduces the IQmath Library

Fixed-Point Numbers (p. 2-3) Representation of fixed-point numbers in the
IQmath Library

Building Models (p. 2-7) Issues to consider when you build models with the
IQmath Library

2 Using the IQmath Library

2-2

About the IQmath Library
The blocks in the C28x IQmath Library correspond to functions in the Texas
Instruments C28x IQmath Library assembly-code library, which target the TI
C2800 family of digital signal processors. You can use these blocks to run
simulations by building models in Simulink before generating code. Once you
develop your model, you can invoke Real-Time Workshop to generate
equivalent code that is optimized to run on a C2000 DSP. During code
generation, each IQmath Library block in your model is mapped to its
corresponding TI IQmath Library assembly-code routine to create
target-optimized code.

The IQmath Library blocks generally input and output fixed-point data types.
The block reference pages discuss the data types accepted and produced by
each block in the library. “Fixed-Point Numbers” on page 2-3 gives a brief
overview of using fixed-point data types in Simulink. For a thorough discussion
of this topic, including issues with scaling and precision when performing
fixed-point operations, refer to your Fixed-Point Blockset documentation.

You can use IQmath Library blocks with certain core Simulink blocks, as well
as with certain blocks from the Fixed-Point Blockset. To learn more about
creating models that include both IQmath Library blocks and blocks from other
blocksets, refer to “Building Models” on page 2-7.

Common Characteristics
The following characteristics are common to all IQmath Library blocks:

• Sample times are inherited from driving blocks.

• Blocks are single rate.

• Parameters are not tunable.

• All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, refer
to the “Block Reference” pages.

Fixed-Point Numbers

2-3

Fixed-Point Numbers
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number (either
signed or unsigned) is shown below.

where

• is the ith binary digit.

• is the word size in bits.

• is the location of the most significant (highest) bit (MSB).

• is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this example,
therefore, the number is said to have four fractional bits, or a fraction length
of four.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

•
… b0b1bws 2– b5 b3b4 b2bws 1–

MSB LSB

binary point

bi

ws

bws 1–

b0

2 Using the IQmath Library

2-4

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a 1. For example, the two’s complement of 000101 is 111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the LSB)

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of the
value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b0. Therefore, you determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

• is the number of bits used to designate the two’s complement integer
portion of the number.

• is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

Example — Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

Q

m

n

Fixed-Point Numbers

2-5

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation the m = 0 is often
implied, as in

Q.15

In the Fixed-Point Blockset, this data type is expressed as

sfrac16

or

sfix16_En15

In the Filter Design Toolbox, this data type is expressed as

[16 15]

Example — Q1.30
Multiplying two Q.15 numbers yields a product that is a signed 32-bit data type
with n = 30 bits to the right of the binary point. One bit is the designated sign
bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore this number is expressed as

Q1.30

In the Fixed-Point Blockset, this data type is expressed as

sfix32_En30

In the Filter Design Toolbox, this data type is expressed as

[32 30]

Example — Q-2.17
Consider a signed 16-bit number with a scaling of 2(-17). This requires n = 17
bits to the right of the binary point, meaning that the most significant bit is
a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two's complement number 1011. When this number is extended

2 Using the IQmath Library

2-6

to 7 bits with sign extension, the number becomes 1111101 and the value of the
number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

Therefore this number is expressed as

Q-2.17

In the Fixed-Point Blockset, this data type is expressed as

sfix16_En17

In the Filter Design Toolbox, this data type is expressed as

[16 17]

Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2^(2) or 4. This means that
the binary point is implied to be 2 bits to the right of the 16 bits, or that there
are n = -2 bits to the right of the binary point. One bit must be the sign bit,
thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore this number is expressed as

Q17.-2

In the Fixed-Point Blockset, this data type is expressed as

sfix16_E2

In the Filter Design Toolbox, this data type is expressed as

[16 -2]

Building Models

2-7

Building Models
You can use IQmath Library blocks in models along with certain core
Simulink, Fixed-Point Blockset, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

Converting Data Types
As always, it is vital to make sure that any blocks you connect in a model have
compatible input and output data types. In most cases, IQmath Library blocks
handle only a limited number of specific data types. You can refer to any block
reference page in “Block Reference” for a discussion of the data types that the
block accepts and produces.

When you connect IQmath Library blocks and Fixed-Point Blockset blocks, you
often need to set the data type and scaling in the block parameters of the
Fixed-Point Blockset block to match the data type of the IQmath Library block.
Many Fixed-Point Blockset blocks allow you to set their data type and scaling
through inheritance from the driving block, or through backpropagation from
the next block. This can be a good way to set the data type of a Fixed-Point
Blockset block to match a connected IQmath Library block.

Some DSP Blockset blocks and core Simulink blocks also accept fixed-point
data types. Make the appropriate settings in these blocks’ parameters when
you connect them to an IQmath Library block.

Using Sources and Sinks
The IQmath Library does not include source or sink blocks. Use source or sink
blocks from the core Simulink library or Fixed-Point Blockset in your models
with IQmath Library blocks.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than one
blockset. For example, both the IQmath Library and the Fixed-Point Blockset
have a Multiply block. When you are building a model to run on C2000 DSP,
choosing the block from the IQmath Library always yields better optimized
code. You can use a similar block from another library if it gives you

2 Using the IQmath Library

2-8

functionality that the IQmath Library block does not support, but you will
generate code that is less optimized.

3
Block Reference

Blocks — By Library (p. 3-2) Provides tables that list each block in the Embedded
Target for C2000 DSP by library

Blocks — Alphabetical List (p. 3-5) Lists each block in the Embedded Target for C2000 DSP
in alphabetical order

3 Block Reference

3-2

Blocks — By Library

C2400 DSP Chip Support Library (c2400dspchiplib)

C2800 DSP Chip Support Library (c2800dspchiplib)

Block Description

C24x ADC Configure analog to digital converters (ADC)

C24x CAN Receive Configure enhanced Control Area Network
receive mailbox

C24x CAN Transmit Configure enhanced Control Area Network
transmit mailbox

C24x PWM Configure one or more pairs of pulse wave
modulators (PWMs)

C24x From Memory Retrieve data from specific memory location on
the target

C24x To Memory Write data to the specific memory location on
the target

Block Description

C28x ADC Configure analog to digital converters (ADC)

C28x eCAN Receive Configure enhanced Control Area Network
receive mailbox

C28x eCAN Transmit Configure enhanced Control Area Network
transmit mailbox

C28x PWM Configure one or more pairs of pulse wave
modulators (PWMs)

Blocks — By Library

3-3

Target Preferences Library (c2000tgtpreflib)

C28x IQmath Library (tiiqmathlib)

C28x From Memory Retrieve data from specific memory location on
the target

C28x To Memory Write data to the specific memory location on
the target

Block Description

F2812 eZdsp Preferences for F2812 eZdsp™ DSK targets

LF2407 eZdsp Preferences for LF2407 eZdsp™ DSK targets

Block Description

Absolute IQN Calculate absolute value

Arctangent IQN Calculate four-quadrant arc tangent

Division IQN Divide two IQ numbers

Float to IQN Convert a floating-point number to an IQ
number

Fractional part IQN Return the fractional part of an IQ number

Fractional part IQN x int32 Return the fractional part of the result of
multiplying an IQ number and a long
integer

Integer part IQN Return the integer part of an IQ number

Integer part IQN x int32 Return the integer part of the result of
multiplying an IQ number and a long
integer

Block Description

3 Block Reference

3-4

IQN to Float Convert an IQ number to a floating-point
number

IQN x int32 Multiply an IQ number and a long integer

IQN x IQN Multiply two IQ numbers with the same Q
format

IQN1 to IQN2 Convert an IQ number to a different Q
format

IQN1 x IQN2 Multiply two IQ numbers with different Q
formats

Magnitude IQN Calculate the magnitude of two orthogonal
IQ numbers

Saturate IQN Saturate an IQ number

Square Root IQN Calculate the square root or inverse square
root of an IQ number

Trig Fcn IQN Calculate the sine, cosine, or tangent of an
IQ number

Block Description

Blocks — Alphabetical List

3-5

Blocks — Alphabetical List 3

Absolute IQN . 3-7
Arctangent IQN . 3-8
C24x ADC . 3-9
C24x CAN Receive . 3-11
C24x CAN Transmit . 3-13
C24x From Memory . 3-15
C24x PWM . 3-16
C24x To Memory . 3-20
C28x ADC . 3-22
C28x eCAN Receive . 3-24
C28x eCAN Transmit . 3-26
C28x From Memory . 3-28
C28x PWM . 3-29
C28x To Memory . 3-33
Division IQN . 3-35
F2812 eZdsp . 3-36
Float to IQN . 3-44
Fractional part IQN . 3-45
Fractional part IQN x int32 . 3-46
Integer part IQN . 3-47
Integer part IQN x int32 . 3-48
IQN to Float . 3-49
IQN x int32 . 3-50
IQN x IQN . 3-51
IQN1 to IQN2 . 3-52
IQN1 x IQN2 . 3-53
LF2407 eZdsp . 3-54
Magnitude IQN . 3-62
Saturate IQN . 3-63
Square Root IQN . 3-64
Trig Fcn IQN . 3-65

3

3-6

Absolute IQN

3-7

3Absolute IQNPurpose Calculate the absolute value of an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block computes the absolute value of an IQ number input. The output is
also an IQ number.

Dialog Box

See Also Arctangent IQN, Division IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNabs

IQmath

Absolute IQN

Arctangent IQN

3-8

3Arctangent IQNPurpose Calculate the four-quadrant arc tangent

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block computes the four-quadrant arc tangent of the IQ number inputs
and produces IQ number output.

Function option — Type of arc tangent to calculate, either

• atan2 — Compute the four-quadrant arc tangent with output in radians
with values between -pi and +pi.

• atan2PU — Compute the four-quadrant arc tangent per unit. If atan2(B,A)
is greater than or equal to zero, atan2PU(B,A) = atan2(B,A)/2*pi.
Otherwise, atan2PU(B,A) = atan2(B,A)/2*pi+1. The output is in per-unit
radians with values from 0 to 2pi radians.

Dialog Box

See Also Absolute IQN, Division IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNatan2

IQmath

Arctangent IQN

C24x ADC

3-9

3C24x ADCPurpose Generate code to configure the C24x analog-to-digital converter

c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x ADC block configures the C24x ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. It outputs
digital values representing the analog input signal and stores the converted
values in the result register of your digital signal processor. You use this block
to capture and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

The output of the C24x ADC is a vector of uint16 values. The output values
are in the range 0 to 1023 because the C24x ADC is 10-bit converter.

The C24x ADC block supports ADC operation in dual-sequence and
cascaded-sequencer modes. In dual-sequencer mode, either Module A or
Module B can be used for the ADC block, and two ADC blocks are allowed in
the model. In cascaded-sequencer mode, both Module A and Module B are
used for a single ADC block.

Module — Specifies which DSP module to use

• A — Displays the ADC channels in module A (ADCINA0 through
ADCINA7)

• B — Displays the ADC channels in module B (ADCINB0 through
ADCINB7)

• A and B — Displays the ADC channels in both modules A and B (ADCINA0
through ADCINA7 and ADCINB0 through ADCINB7)

Use the check boxes to select the desired ADC channels.

Sample time — Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at which values are
read from the result registers. See “Scheduling and Timing” on page 1-8 for
additional information on timing.

To set different sample times for different groups of ADC channels, you must
add separate C24x ADC blocks to your model and set the desired sample times
for each block.

C24x ADC

C24x ADC

C24x ADC

3-10

Dialog Box

See Also C24x PWM

C24x CAN Receive

3-11

3C24x CAN ReceivePurpose Configure a CAN mailbox to receive messages from the CAN pins and output
received messages at specified sample intervals

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x Control Area Network (CAN) Receive block generates source code for
receiving CAN messages through a CAN mailbox. The CAN module on the DSP
chip provides serial communication capability and has six mailboxes — two
for receive, two for transmit, and two configurable for receive or transmit. The
C24x supports CAN data frames in standard or extended format.

The C24x CAN Receive block has up to two and, optionally, three output ports.

• First output port is the function call port, and a function call subsystem
should be connected to this port. When a new message is received, this
subsystem is executed.

• Second output port is the message data port. The received data is output in
the form of a vector of elements of the selected data type. The length of the
vector is always 8 bytes.

• Third output port is optional and appears only if Output message length is
selected.

Detailed information on the CAN module is in the TMS320LF/LC240xA DSP
Controller Reference Guide — System and Peripherals, Literature Number
SPRU357B, available at the Texas Instruments Web site.

Mailbox number — Unique number between 0 and 5 that refers to a mailbox
area in RAM. Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable
for receive or transmit, and 4 and 5 are transmit mailboxes. In standard data
frame mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is associated with a receive mailbox. Only messages that
match the mailbox message identifier are accepted into it.

Message type — Select Standard (11-bit identifier) or Extended
(29-bit identifier).

Mailbox: 0
C24x CAN

Receive

f()

MsgMsgMsg

C24x CAN Receive

C24x CAN Receive

3-12

Sample time — Frequency with which the mailbox is polled to determine if a
new message has been received. A new message causes a function call to be
emitted from the mailbox.

Data type — Type of the data in the 8-byte data vector. Valid values are
uint16 or unit32.

Output message length — Select to output the message length in bytes to the
third output port. If not selected, the block has only two output ports.

Dialog Box

See Also C24x CAN Transmit

C24x CAN Transmit

3-13

3C24x CAN TransmitPurpose Configure a CAN mailbox to transmit messages to the CAN pins

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x Control Area Network (CAN) Transmit block generates source code
for transmitting CAN messages through a CAN mailbox. The CAN module on
the DSP chip provides serial communication capability and has six mailboxes
— two for receive, two for transmit, and two configurable for receive or
transmit.The C24x supports CAN data frames in standard or extended format.

Detailed information on the CAN module is in the TMS320LF/LC240xA DSP
Controller Reference Guide — System and Peripherals, Literature Number
SPRU357B, available at the Texas Instruments website.

Mailbox number — Unique number between 0 and 5 that refers to a mailbox
area in RAM. Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable
for receive or transmit, and 4 and 5 are transmit mailboxes. In standard data
frame mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is coded into a message that is sent to the CAN bus.

Message type — Select Standard (11-bit identifier) or Extended
(29-bit identifier).

Mailbox: 5
C24x CAN
Transmit

Msg

C24x CAN Transmit

C24x CAN Transmit

3-14

Dialog Box

See Also C24x CAN Receive

C24x From Memory

3-15

3C24x From MemoryPurpose Generate code that retrieves data from any valid memory address on the board,
internal or external

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block retrieves data of the specified data type from a particular memory
address on the target.

Memory address — Address of the target memory location, in hexadecimal,
from which to read data

Data type — Data type of the data to obtain from the above memory address.
The data is read as 16-bit data and then cast to the selected data type. Valid
data types are double, single, int8, uint8, int16, uint16, int32, and uint32.

Sample time — Time interval, in seconds, between consecutive reads from the
specified memory location.

Samples per frame — Number of elements of the specified datatype to be read
from the memory region starting at the given address

Dialog Box

See Also C24x To Memory

C24x From
Memory

C24x From Memory

C24x PWM

3-16

3C24x PWMPurpose Generate code that configures the event manager (EV) modules to generate
PWM waveforms

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description LF2407 DSPs include a suite of pulse width modulators (PWM) used to
generate various signals. This block provides options to set the A or B module
event managers to generate the waveforms you require. The twelve PWMs are
configured in six pairs, with three pairs in each module.

Module — Specifies which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and
PWM5/PWM6)

• B — Displays the PWMs in module B (PWM7/PWM8, PWM9/PWM10, and
PWM11/PWM12)

Note PWMs in module A use the Event Manager A, Timer 1, and PWMs in
module B use Event Manager B, Timer 3. You should make sure that the
TimerClock selected in the Scheduling section of the LF2407 eZdsp Target
Preferences block does not conflict with the timers used for the PWMs.

Waveform period source — Source from which the waveform period value is
obtained. Select Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period — Period of the timer used to generate PWM waveform
measured in clock cycles. The relationship betwen the timer period and the
waveform period depends on the Waveform type.

Note Clock cycles refers to the system CPU clock on the LF2407 chip. This
clock is 40 MHz.

Waveform type — Type of waveform to be generated by the PWM pair. The
LF2407 PWMs can generate two types of waveforms: Asymmetric and

C24x PWM

C24x PWM

C24x PWM

3-17

Symmetric. The following illustration shows the difference between the two
types of waveforms.

Enable PWM#/PWM# — Check to select the PWM pairs to activate

Pulse width source — Source from which the pulse width is obtained. Select
Specify via dialog to enter the value in Pulse width or select Input port to
use a value from the input port.

Pulse width — Width of the pulse in clock cycles. The default is for the first
PWM in a pair to be triggered Active high and for the second PWM to be
triggered Active low. You can change the PWM control logic by selecting Show
additional parameters.

���������	

���
���

��������	

���
���

������
����������

������
����������

���������������

���
���

���������������

���
���

C24x PWM

3-18

Show additional parameters — Check to display the dialog box with
additional PWM parameters

PWM# control logic — Control logic trigger for the PWM. Active high causes
the pulse value to go from low to high and Active low causes the pulse value
to go from high to low.

Use deadband for PWM#/PWM# — Enables a deadband area of no signal
overlap at the beginning of particular PWM pair signals

Deadband prescaler — Number of clock cycles, which when multiplied by the
Deadband period, determines the size of the deadband. Selectable values are 1,
2, 4, 8, 16, and 32.

Deadband period — Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from 1 to 15.

Deadband

PWM active high

PWM active low

C24x PWM

3-19

Dialog Box

See Also C24x ADC

C24x To Memory

3-20

3C24x To MemoryPurpose Generate code that writes data to any valid memory address on the board,
internal or external

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block sends data of the specified data type to a particular memory address
on the target.

Memory address — Address of the target memory location, in hexadecimal,
to which to write data

Data type — Type of data to be written to the above memory address. Valid
data types are double, single, int8, uint8, int16, uint16, int32, and uint32.
The data is cast from the selected data type to 16-bit data.

Write at initialization — Whether to write the specified Value at program
start

Value — First value of data to be written to memory at program start

Write at termination — Whether to write the specified Value at program end

Value — Last value of data to be written to memory at program termination

Write at every sample time — Whether to write data in real time during
program execution

Note If your C24x To Memory block is set to write to memory at every
sample time interval (that is, it has an incoming port) and it receives a vector
signal input of N elements, a corresponding memory region starting with the
specified Memory address is updated at every sample time. If you specify an
Initial and/or Termination value, that value is written to all locations in the
same memory region at initialization and/or termination.

If your C24x To Memory block does not write to memory at every sample time
(that is, it does not have an incoming port) and you specify an Initial and/or
Termination value, that value is written to a single memory location that
corresponds to the specified Memory address.

C24x To
Memory

C24x To Memory

C24x To Memory

3-21

Dialog Box

See Also C24x From Memory

C28x ADC

3-22

3C28x ADCPurpose Generate code to configure the ADC to output data streams

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x ADC block configures the C28x ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. It outputs
digital values reprensenting the analog input signal and stores the converted
values in the result register of your digital signal processor. You use this block
to capture and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

The output of the C28x ADC is a vector of uint16 values. The output values
are in the range 0 to 4095 because the C28x ADC is 12-bit converter.

The C28x ADC blcok supports ADC operation in dual-sequencer and
cascaded-sequencer modes. In dual-sequencer mode, either Module A or
Module B can be used for the ADC block, and two ADC blocks are allowed in
the model. In cascaded-sequencer mode, both Module A and Module B are
used for a single ADC block.

Module — Specifies which DSP module to use

• A — Displays the ADC channels in module A (ADCINA0 through
ADCINA7)

• B — Displays the ADC channels in module B (ADCINB0 through
ADCINB7)

• A and B — Displays the ADC channels in both modules A and B (ADCINA0
through ADCINA7 and ADCINB0 through ADCINB7)

Use the check boxes to select the desired ADC channels.

Sample time — Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at which values are
read from the result registers. See “Scheduling and Timing” on page 1-8 for
additional information on timing.

To set different sample times for different groups of ADC channels, you must
add separate C28x ADC blocks to your model and set the desired sample times
for each block.

C28x ADC

C28x ADC

C28x ADC

3-23

Dialog Box

See Also C28x PWM

C28x eCAN Receive

3-24

3C28x eCAN ReceivePurpose Configure an eCAN mailbox to receive messages from the eCAN pins and
output received messages at specified sample intervals

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x enhanced Control Area Network (eCAN) Receive block generates
source code for receiving eCAN messages through an eCAN mailbox. The eCAN
module on the DSP chip provides serial communication capability and has 32
mailboxes configurable for receive or transmit.The C28x supports eCAN data
frames in standard or extended format.

The C28x eCAN Receive block has up to two and, optionally, three output ports.

• First output port is the function call port, and a function call subsystem
should be connected to this port. When a new message is received, this
subsystem is executed.

• Second output port is the message data port. The received data is output in
the form of a vector of elements of the selected data type. The length of the
vector is always 8 bytes.

• Third output port is optional and appears only if Output message length is
selected.

Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature Number
SPRU074A, available at the Texas Instruments Web site.

Mailbox number — Unique number between 0 and 15 for standard or between
0 and 31 for enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is associated with a receive mailbox. Only messages that
match the mailbox message identifier are accepted into it.

Message type — Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Mailbox: 0
C28x eCAN

Receive

f()

MsgMsgMsg

C28x eCAN Receive

C28x eCAN Receive

3-25

Sample time — Frequency with which the mailbox is polled to determine if a
new message has been received. A new message causes a function call to be
emitted from the mailbox.

Data type — Type of the data in the 8-byte data vector. Valid values are uint16
or unit32.

Output message length — Select to output the message length in bytes to the
third output port. If not selected, the block has only two output ports.

Dialog Box

See Also C28x eCAN Transmit

C28x eCAN Transmit

3-26

3C28x eCAN TransmitPurpose Configure an eCAN mailbox to transmit a message to the board’s CAN bus pins

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C84x enhanced Control Area Network (eCAN) Transmit block generates
source code for transmitting eCAN messages through an eCAN mailbox. The
eCAN module on the DSP chip provides serial communication capability and
has 32 mailboxes configurable for receive or transmit. The C28x supports
eCAN data frames in standard or extended format.

Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature Number
SPRU074A, available at the Texas Instruments Web site.

Mailbox number — Unique number between 0 and 15 for standard or between
0 and 31 for enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec (' '), respectively, to convert the entry. The
message identifier is coded into a message that is sent to the CAN bus.

Message type — Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Dialog Box

Mailbox: 1
C28x eCAN

Transmit
Msg

C28x eCAN Transmit

C28x eCAN Transmit

3-27

See Also C28x eCAN Receive

C28x From Memory

3-28

3C28x From MemoryPurpose Generate code that retrieves data from any valid memory address on the board,
internal or external

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description This block retrieves data of the specified data type from a particular memory
address on the target.

Memory address — Address of the target memory location, in hexadecimal,
from which to read data

Data type — Data type of the data to obtain from the above memory address.
The data is read as 16-bit data and then cast to the selected data type. Valid
data types are double, single, int8, uint8, int16, uint16, int32, and uint32.

Sample time — Time interval, in seconds, between consecutive reads from the
specified memory location.

Samples per frame — Number of elements of the specified datatype to be read
from the memory region starting at the given address

Dialog Box

See Also C28x To Memory

C28x From
Memory

C28x From Memory

C28x PWM

3-29

3C28x PWMPurpose Generate code that configures the event manager (EV) modules to generate
PWM waveforms

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description F2812 DSPs include a suite of pulse width modulators (PWM) used to generate
various signals. This block provides options to set the A or B module event
managers to generate the waveforms you require. The twelve PWMs are
configured in six pairs, with three pairs in each module.

Module — Specifies which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and
PWM5/PWM6)

• B — Displays the PWMs in module B (PWM7/PWM8, PWM9/PWM10, and
PWM11/PWM12)

Note PWMs in module A use the Event Manager A, Timer 1, and PWMs in
module B use Event Manager B, Timer 3. You should make sure that the
TimerClock selected in the Scheduling section of the F2812 eZdsp Target
Preferences block does not conflict with the timers used for the PWMs.

Waveform period source — Source from which the waveform period value is
obtained. Select Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period — Period of the timer used to generate the PWM waveform
measured in clock cycles. The relationship betwen the timer period and the
waveform period depends on the Waveform type.

Note Clock cycles refers to the system CPU clock on the F2812 chip. This
clock is 150 MHz.

Waveform type — Type of waveform to be generated by the PWM pair. The
F2812 PWMs can generate two types of waveforms: Asymmetric and

C28x PWM

C28x PWM

C28x PWM

3-30

Symmetric. The following illustration shows the difference between the two
types of waveforms.

Use PWM#/PWM# — Check to select the PWM pairs to activate

Pulse width source — Source from which the pulse width is obtained. Select
Specify via dialog to enter the value in Pulse width or select Input port to
use a value from the input port.

Pulse width — Width of the pulse in clock cycles. The default is for the first
PWM in a pair to be triggered Active high and for the second PWM to be
triggered Active low. You can change the PWM control logic by selecting Show
additional parameters.

���������	

���
���

��������	

���
���

������
����������

������
����������

���������������

���
���

���������������

���
���

C28x PWM

3-31

Show additional parameters — Check to display the dialog box with
additional PWM parameters

PWM# control logic — Control logic trigger for the PWM. Active high causes
the pulse value to go from low to high and Active low causes the pulse value
to go from high to low.

Use deadband for PWM#/PWM# — Enables a deadband area of no signal
overlap at the beginning of particular PWM pair signals

Deadband prescaler — Number of clock cycles, which, when multiplied by the
Deadband period, determines the size of the deadband. Selectable values are 1,
2, 4, 8, 16, and 32.

Deadband period — Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from 1 to 15.

Deadband

PWM active high

PWM active low

C28x PWM

3-32

Dialog Box

See Also C28x ADC

C28x To Memory

3-33

3C28x To MemoryPurpose Generate code that writes data to any valid memory address on the board,
internal or external

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description This block sends data of the specified data type to a particular memory address
on the target.

Memory address — Address of the target memory location, in hexadecimal, to
which to write data

Data type — Type of data to be written to the above memory address. Valid
data types are double, single, int8, uint8, int16, uint16, int32, and uint32.
The data is cast from the selected data type to 16-bit data.

Write at initialization — Whether to write the specified Value at program
start

Value — First value of data to be written to memory at program start

Write at termination — Whether to write the specified Value at program end

Value — Last value of data to be written to memory at program termination

Write at every sample time — Whether to write data in real time during
program execution

Note If your C28x To Memory block is set to write to memory at every
sample time interval (that is, it has an incoming port) and it receives a vector
signal input of N elements, a corresponding memory region starting with the
specified Memory address is updated at every sample time. If you specify an
Initial and/or Termination value, that value is written to all locations in the
same memory region at initialization and/or termination.

If your C28x To Memory block does not write to memory at every sample time
(that is, it does not have an incoming port) and you specify an Initial and/or
Termination value, that value is written to a single memory location that
corresponds to the specified Memory address.

C28x To
Memory

C28x To Memory

C28x To Memory

3-34

Dialog Box

See Also C28x From Memory

Division IQN

3-35

3Division IQNPurpose Divide two IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block divides two numbers that use the same Q format, using the
Newton-Raphson technique. The resulting quotient uses the same Q format at
the inputs.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNdiv

IQmath

IQN / IQN

F2812 eZdsp

3-36

3F2812 eZdspPurpose Set the build, link, and board code generation preferences for F2812 eZdsp™
DSK targets

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation for your
Spectrum Digital F2812 eZdsp™ target. Adding this block to your Simulink
model provides access to building, linking, compiling, and targeting settings
you need to configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

BuildOptions — CompilerOptions

• Compiler Verbosity — Amount of information the compiler returns while it
runs. Options are

- Verbose — Returns all compiler messages

- Quiet — Suppresses compiler progress messages

- Super Quiet — Suppresses all compiler messages

• Keep ASM Files — Whether Real-Time Workshop and the Embedded Target
for TI C2000 DSP save your assembly language (.asm) files after creation.
The default is true — .asm files are kept in your current directory. If you
choose not to keep the .asm files, set this option to false.

• Optimization Level — Degree of optimization provided by the TI optimizing
compiler to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create new projects, the
Embedded Target for TI C2000 DSP sets the optimization to Function(-o2).

• Symbolic Debugging — Whether to generate symbolic debugging directives
that the C source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging is enabled.

F2812 eZdsp

F2812 eZdsp

3-37

BuildOptions — LinkerOptions

• Create MAP File — Whether the linker produces a map of the input and
output sections, including null areas, and places the listing in a file in your
current directory with the name modelname.map. The default is True — the
listing is produced.

• Keep OBJ Files — Whether Real-Time Workshop and the Embedded Target
for TI C2000 DSP save your object (.obj) files after creation. The linker uses
object (.obj extension) files to generate a single executable common object
file format (COFF) file that you run on the target DSP. The object files are
saved to your current project directory. Saving your .obj files can speed up
the compile process by not having to recompile files that you have not
changed. The default is True — the .obj files are retained.

• Linker CMD File — Type of linker command file to use when the linker
runs. Linker command files contain linker or hex conversion utility options
and the names of input files to the linker or hex conversion utility. Linker
command file types are

- Internal_memory_map — Uses the small memory model on the target,
which requires that all sections of the code and data fit into the memory
available only on the F2812 DSP chip (minus the flash memory).

- Full_memory_map — Uses the large memory model on the target, which
does not restrict the size of the code and data sections to DSP memory only.
Your data can use the storage space up to the limits of the board.

When you select the Internal_memory_map option, the Embedded Target for
TI C2000 DSP specifies that only the available internal memory on the
F2812 is used. Internal_memory_map represents the most efficient memory
use.

If you select Internal_memory_map, but your data or program requires far
calls, the TI compiler returns an error message like the following in the CCS
IDE:
error: can t allocate '.far'

or
error: can t allocate '.text'

indicating that your data does not fit in internal memory or your code or
program do not fit in internal memory. To eliminate these errors, select

F2812 eZdsp

3-38

Full_memory_map. Note that your program might run more slowly than if you
use the internal map option.

BuildOptions — RunTimeOptions

• Build Action — Action taken by Real-Time Workshop when you click Build
or press Ctrl+B in the Simulation Parameters dialog box. The actions are
cumulative — each listed action adds features to the previous action on the
list and includes all the previous features:

- Generate_code_only — Directs Real-Time Workshop to generate C code
only from the model. It does not use the TI software tools, such as the
compiler and linker, and you do not need to have CCS installed. Also,
MATLAB does not create the handle to CCS that results from the other
options.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a
build directory named modelname_C2000_rtw in your MATLAB working
directory. This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

- Create_CCS_Project — Directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. Selecting this
setting enables the CCS board number option so you can select which
installed board to target. This option offers a convenient way to build
projects in CCS.

- Build — Builds the executable COFF file, but does not download the file
to the target.

- Build_and_execute — Drects Real-Time Workshop to download and run
your generated code as an executable on your target. This is the default.

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

• Overrun Action — Defines the action to take when an interrupt overrun
occurs.

F2812 eZdsp

3-39

- Continue — Ignore overruns encountered while running the model. This
is the default.

- Halt — Stop program execution.

CCSLink

• CCS Handle Name — Name of the CCS handle. Click in the edit box to
change the name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link between
MATLAB and CCS. If you have used the link portion of the Embedded Target
for TI C2000 DSP, you are familiar with function ccsdsp, which creates links
between the IDE and MATLAB. This option refers to the same link, called cc
in the function reference pages. Although MATLAB to CCS is a link, it is
actually a handle to an object that contains information about the object,
such as the target board and processor it accesses.

• Export CCS Handle — Whether to export the CCS handle to your MATLAB
workspace, giving it the name you assigned in CCS Handle Name. If this is
set to true, after you build your model, you will see the CCS object in your
MATLAB workspace browser with the name you provided and class type
ccsdsp.

CodeGeneration

• Scheduler

- Timer — CPU timer to use for scheduling

DSPBoard

• DSP Board Label — Name of the installed DSP board. Click in the edit box
to change the label.

Note The board label here must match exactly the label (name) of the board
entered in your Code Composer Studio setup.

F2812 eZdsp

3-40

• DSP Chip
- DSP Chip Label — DSP chip model. Select the DSP chip installed on your

target. The chip model is fixed for the F2812 eZdsp. If you change the chip
model, an error will be generated in code generation.

- eCAN — Parameters that affect the extended control area network
(eCAN) module. Most of these parameters affect the eCAN bit timing. The
CAN protocol divides the nominal bit time into four segments, which are
reflected in the settable parameters below. The four segments are

SYNCSEG — Time used to synchronize the nodes on the bus. It is always
one time quantum (TQ), which is defined as

where SYSCLK is the CAN module system clock frequency, and the
BitRatePrescaler is defined below.

PROP_SEG — Time used to compensate for the physical delays in the
network

PHASE_SEG1 — Phase used to compensate for positive edge phase error

PHASE_SEG2 — Phase used to compensate for negative edge phase error

The settable parameters are

BitRatePrescaler — Value by which to scale the bit rate. Valid values are
from 1 to 256. As noted in the equation above, this value determines the
value of TQ.

EnhancedCANMode — Whether to use the CAN module in extended
mode, which provides additional mailboxes and time stamping. The
default is True. Setting this parameter to False enables only standard
mode.

TQ 1
SYSCLK
-------------------------- BitRatePrescalar 1+()⋅=

F2812 eZdsp

3-41

SAM — Number of samples used by the CAN module to determine the
CAN bus level. Selecting Sample_one_time samples once at the sampling
point. Selecting Sample_three_times samples once at the sampling point
and twice before at a distance of TQ/2. A majority decision is made from
the three points.

SBG — Sets the message resynchronization triggering. Options are
Only_falling_edges and Both_falling_and_rising_edges.

SJW — Sets the synchronization jump width, which determines how many
units of TQ a bit is allowed to be shortened or lengthened when
resynchronizing.

SelfTestMode — If True, sets the eCAN module to loopback mode, where
a “dummy” acknowledge message is sent back without needing an
acknowledge bit. The default is False.

TSEG1 — Sets the value of time segment 1, which, with TSEG2 and BRP,
determines the length of a bit on the eCAN bus. TSEG1 must be greater
than TSEG2 and the Information Processing Time (IPT). The IPT is the
time needed to process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1 are from
1 through 16.

TSEG2 — Sets the value of time segment 2 (PHASE_SEG2), which, with
TSEG1 and BRP, determines the length of a bit on the eCAN bus. TSEG2
must be less than or equal to TSEG1 and greater than or equal to IPT.
Valid values for TSEG2 are from 1 through 8.

The eCAN bit timing is shown in the following illustration.

F2812 eZdsp

3-42

����

����� !

��������"�������

�#$ �#$

�� !� �� !%

��������
�����

������
�����

����&���������

F2812 eZdsp

3-43

Dialog Box

See Also C28x ADC, C28x eCAN Receive, C28x eCAN Transmit, C28x PWM

Float to IQN

3-44

3Float to IQNPurpose Convert a floating-point number to an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts a floating-point number to an IQ number. The Q value of
the output is specified in the following field:

Q value — Q value from 1 to 30 that specifies the precision of the output

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQN

IQmath

Float to IQN

Fractional part IQN

3-45

3Fractional part IQNPurpose Return the fractional portion of an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block returns the fractional portion of an IQ number. The returned value
is an IQ number in the same IQ format.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float, IQN x
int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNfrac

IQmath

Fractional part IQN

Fractional part IQN x int32

3-46

3Fractional part IQN x int32Purpose Multiply an IQ number with a long integer and return the ractional part of the
result

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and returns the
fractional portion of the resulting IQ number.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Integer part IQN, Integer part IQN x int32, IQN to Float, IQN x int32,
IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate IQN,
Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32frac

IQmath

Fractional part
IQN x int32

Integer part IQN

3-47

3Integer part IQNPurpose Return the integer portion of an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block returns the integer portion of an IQ number. The returned value is
a long integer.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN x int32, IQN to Float, IQN
x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNint

IQmath

Integer part IQN

Integer part IQN x int32

3-48

3Integer part IQN x int32Purpose Multiply an IQ number with a long integer and return the integer part of the
result

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and returns the
integer portion of the resulting IQ number as a long integer.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, IQN to Float, IQN x int32,
IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate IQN,
Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32int

IQmath

Integer part
IQN x int32

IQN to Float

3-49

3IQN to FloatPurpose Convert an IQ number to a floating-point number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts an IQ input to an equivalent floating-point number. The
output is a single floating-point number.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNtoF

IQmath

IQN to Float

IQN x int32

3-50

3IQN x int32Purpose Multiply an IQ number with a long integer and return an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and produces an IQ
output of the same Q value as the IQ input.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32

IQmath

IQN x int32

IQN x IQN

3-51

3IQN x IQNPurpose Multiply two IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies two IQ numbers. Optionally, it can also round and
saturate the result.

Multiply option — Type of multiplication to perform

• Multiply — Multiply the numbers.

• Multiply with Rounding — Multiply the numbers and round the result.

• Multiply with Rounding and Saturation — Multiply the numbers and
round and saturate the result to the maximum value.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpy

IQmath

IQN x IQN

IQN1 to IQN2

3-52

3IQN1 to IQN2Purpose Convert an IQ number to a different Q format

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts an IQ number in a particular Q format to a different Q
format.

New Q — Q value from 1 to 30 that specifies the precision of the output

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNtoIQX

IQmath

IQN1 to IQN2

IQN1 x IQN2

3-53

3IQN1 x IQN2Purpose Multiply two IQ numbers that are in different Q formats

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiples two IQ numbers when the numbers are represented in
different Q formats. The format of the result is specified in the following field:

Output Q value — Q value from 1 to 30 that specifies the precision of the
output

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyIQx

IQmath

IQN1 x IQN2

LF2407 eZdsp

3-54

3LF2407 eZdspPurpose Set the build, link, and board code generation preferences for LF2407 eZdsp™
DSK targets

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation for your
Spectrum Digital LF2407 eZdsp™ target. Adding this block to your Simulink
model provides access to building, linking, compiling, and targeting settings
you need to configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

BuildOptions — CompilerOptions

• Compiler Verbosity — Amount of information the compiler returns while it
runs. Options are

- Verbose — Returns all compiler messages

- Quiet — Suppresses compiler progress messages

- Super Quiet — Suppresses all compiler messages

• Keep ASM Files — Whether Real-Time Workshop and the Embedded Target
for TI C2000 DSP save your assembly language (.asm) files after creation.
The default is true — .asm files are kept in your current directory. If you
choose not to keep the .asm files, set this option to false.

• Optimization Level — Degree of optimization provided by the TI optimizing
compiler to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create new projects, the
Embedded Target for TI C2000 DSP sets the optimization to Function(-o2).

• Symbolic Debugging — Whether to generate symbolic debugging directives
that the C source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging is enabled.

LF2407 eZdsp

LF2407 eZdsp

3-55

BuildOptions — LinkerOptions

• Create MAP File — Whether the linker produces a map of the input and
output sections, including null areas, and places the listing in a file in your
current directory with the name modelname.map. The default is True — the
listing is produced.

• Keep OBJ Files — Whether Real-Time Workshop and the Embedded Target
for TI C2000 DSP save your object (.obj) files after creation. The linker uses
object (.obj extension) files to generate a single executable common object
file format (COFF) file that you run on the target DSP. The object files are
saved to your current project directory. Saving your .obj files can speed up
the compile process by not having to recompile files that you have not
changed. The default is True — the .obj files are retained.

• Linker CMD File — Type of linker command file to use when the linker
runs. Linker command files contain linker or hex conversion utility options
and the names of input files to the linker or hex conversion utility. Linker
command file types are

- Internal_memory_map — Uses the small memory model on the target,
which requires that all sections of the code and data fit into the memory
available only on the LF2407 DSP chip (minus the flash memory).

- Full_memory_map — Uses the large memory model on the target, which
does not restrict the size of the code and data sections to DSP memory only.
Your data can use the storage space up to the limits of the board.

When you select the Internal_memory_map option, the Embedded Target for
TI C2000 DSP specifies that only the available internal memory on the
LF2407 is used. Internal_memory_map represents the most efficient
memory use.

If you select Internal_memory_map, but your data or program requires far
calls, the TI compiler returns an error message like the following in the CCS
IDE:
error: can t allocate '.far'

or
error: can t allocate '.text'

indicating that your data does not fit in internal memory or your code or
program do not fit in internal memory. To eliminate these errors, select

LF2407 eZdsp

3-56

Full_memory_map. Note that your program might run more slowly than if you
use the internal map option.

BuildOptions — RunTimeOptions

• Build Action — Action taken by Real-Time Workshop when you click Build
or press Ctrl+B in the Simulation Parameters dialog box. The actions are
cumulative — each listed action adds features to the previous action on the
list and includes all the previous features:

- Generate_code_only — Directs Real-Time Workshop to generate C code
only from the model. It does not use the TI software tools, such as the
compiler and linker, and you do not need to have CCS installed. Also,
MATLAB does not create the handle to CCS that results from the other
options.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a
build directory named modelname_C2000_rtw in your MATLAB working
directory. This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

- Create_CCS_Project — Directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. Selecting this
setting enables the CCS board number option so you can select which
installed board to target. This option offers a convenient way to build
projects in CCS.

- Build — Builds the executable COFF file, but does not download the file
to the target.

- Build_and_execute — Drects Real-Time Workshop to download and run
your generated code as an executable on your target. This is the default.

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

• Overrun Action — Defines the action to take when an interrupt overrun
occurs.

LF2407 eZdsp

3-57

- Continue — Ignore overruns encountered while running the model. This
is the default.

- Halt — Stop program execution.

CCSLink

• CCS Handle Name — Name of the CCS handle. Click in the edit box to
change the name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link between
MATLAB and CCS. If you have used the link portion of the Embedded Target
for TI C2000 DSP, you are familiar with function ccsdsp, which creates links
between the IDE and MATLAB. This option refers to the same link, called cc
in the function reference pages. Although MATLAB to CCS is a link, it is
actually a handle to an object that contains information about the object,
such as the target board and processor it accesses.

• Export CCS Handle — Whether to export the CCS handle to your MATLAB
workspace, giving it the name you assigned in CCS Handle Name. If this is
set to true, after you build your model, you will see the CCS object in your
MATLAB workspace browser with the name you provided and class type
ccsdsp.

CodeGeneration

• Scheduler

- Timer — Event manager (EV) timer to use for scheduling

- TimerClockPrescaler — Clock divider factor by which to prescale the
selected timer to produce the desired model rate. The system clock for the
TMS320LF2407 DSP is 40 MHz.

DSPBoard

• DSP Board Label — Name of the installed DSP board. Click in the edit box
to change the label.

Note The board label here must match exactly the label (name) of the board
entered in your Code Composer Studio setup.

LF2407 eZdsp

3-58

• DSPChip

- CAN — Parameters that affect the control area network (CAN) module.
Most of these parameters affect the CAN bit timing. The CAN protocol
divides the nominal bit time into four segments, which are reflected in the
settable parameters below. The four segments are

SYNCSEG — Time used to synchronize the nodes on the bus. It is always
one time quantum (TQ), which is defined as

where SYSCLK is the CAN module system clock frequency, and the
BitRatePrescaler is defined below.

PROP_SEG — Time used to compensate for the physical delays in the
network

PHASE_SEG1 — Phase used to compensate for positive edge phase error

PHASE_SEG2 — Phase used to compensate for negative edge phase error

The settable parameters are

BitRatePrescaler — Value by which to scale the bit rate. Valid values are
from 1 to 256. As noted in the equation above, this value determines the
value of TQ.

SAM — Number of samples used by the CAN module to determine the
CAN bus level. Selecting Sample_one_time samples once at the sampling
point. Selecting Sample_three_times samples once at the sampling point

TQ 1
SYSCLK
-------------------------- BitRatePrescalar 1+()⋅=

LF2407 eZdsp

3-59

and twice before at a distance of TQ/2. A majority decision is made from
the three points.

SBG — Sets the message resynchronization triggering. Options are
Only_falling_edges and Both_falling_and_rising_edges.

SJW — Sets the synchronization jump width, which determines how many
units of TQ a bit is allowed to be shortened or lengthened when
resynchronizing.

SelfTestMode — If True, sets the CAN module to loopback mode, where a
“dummy” acknowledge message is sent back without needing an
acknowledge bit.

TSEG1 — Sets the value of time segment 1, which, with TSEG2 and BRP,
determines the length of a bit on the CAN bus. TSEG1 must be greater
than TSEG2 and the Information Processing Time (IPT). The IPT is the
time needed to process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1 are from
1 through 16.

TSEG2 — Sets the value of time segment 2 (PHASE_SEG2), which, with
TSEG1 and BRP, determines the length of a bit on the CAN bus. TSEG2
must be less than or equal to TSEG1 and greater than or equal to IPT.
Valid values for TSEG2 are from 1 through 8.

- DSP Chip Label — DSP chip model. Select the DSP chip installed on your
target. The chip model is fixed for the LF2407 eZdsp. If you change the
chip model, an error will be generated in code generation.

The CAN bit timing is shown in the following illustration.

LF2407 eZdsp

3-60

����

����� !

��������"�������

�#$ �#$

�� !� �� !%

��������
�����

������
�����

����&���������

LF2407 eZdsp

3-61

Dialog Box

See Also C24x ADC, C24x CAN Receive, C24x CAN Transmit, C24x PWM

Magnitude IQN

3-62

3Magnitude IQNPurpose Calculate the magnitude of two IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates the magnitude of two IQ numbers using

The output is an IQ number in the same Q format as the input.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmag

IQmath

Magnitude IQN

a2 b2
+

Saturate IQN

3-63

3Saturate IQNPurpose Saturate an IQ value to specified limits

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block saturates an input IQ number to the specified positive and negative
limits. The returned value is an IQ number of the same Q value as the input.

Positive Limit — Maximum positive value to which to saturate

Negative Limit — Minimum negative value to which to saturate

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Square Root IQN, Trig Fcn IQN

A Y

IQsat

IQmath

Saturate IQN

Square Root IQN

3-64

3Square Root IQNPurpose Calculate the square root or inverse square root

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates the square root or inverse square root of an IQ number
and returns an IQ number of the same Q format. The block uses table lookup
and a Newton-Raphson approximation.

Function option — Whether to calculate the square root or inverse square root

• Square root (_sqrt) — Compute the square root

• Inverse square root (_isqrt) — Compute the inverse square root

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Trig Fcn IQN

A Y

IQNsqrt

IQmath

Square Root IQN

Trig Fcn IQN

3-65

3Trig Fcn IQNPurpose Calculate the sine, cosine, or arc tangent

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates basic trigonometric functions and returns the result as an
IQ number. Valid Q values for IQsin and IQcos are 1 to 29. For all others, valid
Q values are 1 to 30.

Function option — Type of trigonometric function to calculate.

• _IQsin — Compute the sine (sin(A)), where A is in radians.

• _IQsinPU — Compute the sine per unit (sin(2*pi*A)), where A is in
per-unit radians.

• _IQcos — Compute the cosine (cos(A)), where A is in radians.

• _IQcosPU — Compute the cosine per unit (cos(2*pi*A)), where A is in
per-unit radians.

• _IQatan — Compute the arc tangent (tan(A)), where A is in radians.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN

A Y

IQNtrig

IQmath

Trig Fcn IQN

Trig Fcn IQN

3-66

Index-1

Index

A
Absolute IQN block 3-7
ADC blocks

C24x 3-9
C28x 3-22

 analog-to-digital converter
See ADC blocks

applications
TI C2000 1-2

Arctangent IQN block 3-8
asymmetric vs. symmetric waveforms 3-29

B
blocks

adding to model 1-24
recommendations 1-11

build model 1-12
build options 3-36

C
c2000lib startup 1-14
C24x ADC 3-9
C24x CAN Receive block 3-11
C24x CAN Transmit block 3-13
C24x PWM block 3-16
C28x ADC block 3-22
C28x eCAN Receive block 3-24
C28x eCAN Transmit block 3-26
C28x PWM block 3-29
CAN/eCAN

timing 3-40
CAN/eCAN Receive blocks

C24x 3-11
C28x 3-24

CAN/eCAN Transmit blocks

C24x 3-13
C28x 3-26

CCS
link options 3-39
See also Code Composer Studio

clock speed 1-8
Code Composer Studio 1-7

projects 1-29
code generation

ERT and GRT 1-20
options 3-39
overview 1-28

code optimization 2-7
compiler options 3-36
configuration default 1-7
 control area network

See CAN/eCAN
control logic 3-18
conversion

float to IQ number 3-44
IQ number to different IQ number 3-52
IQ number to float 3-49

CPU clock speed 1-8

D
data types

conversion 2-7
deadband

C24x PWM 3-31
C28x PWM 3-18

default build configuration 1-7
Division IQN block 3-35
DSP board

target preferences options 3-39

Index

Index-2

E
ERT code generation 1-20
event manager timer 3-16

F
F2812 eZdsp block 3-36
fixed-point numbers 2-3
Float to IQN block 3-44
floating-point numbers

convert to IQ number 3-44
four-quadrant arctangent 3-8
Fractional part IQN block 3-45
Fractional part IQN x int32 block 3-46
From Memory block

C24x 3-15
C28x 3-28

G
general code generation 1-20
GRT code generation 1-20

H
hardware 1-3

I
Integer part IQN block 3-47
Integer part IQN x int32 block 3-48
IQ Math library 2-2

Absolute IQN block 3-7
Arctangent IQN block 3-8
building models 2-7
code optimization 2-7
common characteristics 2-2

Division IQN block 3-35
Float to IQN block 3-44
Fractional part IQN block 3-45
Fractional part IQN x int32 block 3-46
Integer part IQN block 3-47
Integer part IQN x int32 block 3-48
IQN to Float block 3-49
IQN x int32 block 3-50
IQN x IQN block 3-51
IQN1 to IQN2 block 3-52
IQN1 x IQN2 block 3-53
Magnitude IQN block 3-62
Q format notation 2-4
Saturate IQN block 3-63
Square Root IQN block 3-64
Trig Fcn IQN block 3-65

IQ numbers
convert from float 3-44
convert to different IQ 3-52
convert to float 3-49
fractional part 3-45
integer part 3-47
magnitude 3-62
mulitply by int32 fractional result 3-46
multiply 3-51
multiply by int32 3-50
multiply by int32 integer part 3-48
square root 3-64
trigonometric functions 3-65

IQN to Float block 3-49
IQN x int32 block 3-50
IQN x IQN block 3-51
IQN1 to IQN2 block 3-52
IQN1 x IQN2 block 3-53

Index

Index-3

L
LF2407 eZdsp block 3-54
linker options 3-37

M
Magnitude IQN block 3-62
mailbox 3-11
math blocks

See also IQ Math library
MathWorks software 1-4
memory reading

C24x 3-15
C28x 3-28

messages
F2812 eZdsp 3-24
LF2401 eZdsp 3-11

model
add blocks 1-24
building overview 1-12
creation overview 1-10
IQmath library 2-7

multiplication
IQN x int32 3-50
IQN x int32 fractional part 3-46
IQN x int32 integer part 3-48
IQN x IQN 3-51
IQN1 x IQN2 3-53

O
operating system requirements 1-3
optimization code 2-7

P
prescaler 3-18

projects
CCS 1-29

 pulse wave modulators
See PWM blocks

pulse width 3-17
PWM blocks

C24x 3-16
C28x 3-29
control logic 3-18
deadband 3-18

Q
Q format 2-4

R
receive 3-11
RTW build options

F2812 eZdsp 3-56
LF2407 eZdsp 3-38

RTW categories 1-18
runtime options 3-38

S
sample time

F2812 eZdsp 3-25
LF2407 eZdsp 3-12
maximum 1-8

Saturate IQN block 3-63
scheduling 1-8
set up hardware 1-3
signed fixed-point numbers 2-3
simulation parameters 1-12

automatic 1-17
RTW categories 1-18

Index

Index-4

software requirements 1-4
Square Root IQN block 3-64
startup c2000lib 1-14

T
target configuration

example 3-36
F2812 eZdsp 1-19
LF2407 eZdsp 3-54

target model creation 1-10
target preferences

compiler options 3-36
DSP board options 3-39
linker options 3-37

Target preferences blocks
F2812 eZdsp 3-36
LF2407 eZdsp 3-54

TI software 1-4
timing 1-8

CAN/eCAN 3-40
TLC debugging 1-19
To Memory blocks

See C24x To Memory, C28x To Memory
transmit 3-13
Trig Fcn IQN block 3-65

W
waveforms 3-29

	Getting Started
	What Is the Embedded Target for the TI TMS320C2000 DSP Platform?
	Suitable Applications

	Setting Up and Configuring
	Platform Requirements — Hardware and Operating System
	Supported Hardware for Targets
	Software Requirements
	Verifying the Configuration

	Embedded Target for TI C2000 and Code Composer Studio
	Default Project Configuration

	Scheduling and Timing
	Overview of Creating Models for Targeting
	Online Help
	Notes About Selecting Blocks for Your Models
	Setting Simulation Parameters
	Building Your Model

	Using the c2000lib Blockset
	Hardware Setup
	Starting the c2000lib Library
	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model
	Creating Code Composer Studio Projects Without Loading

	Using the IQmath Library
	About the IQmath�Library
	Common Characteristics

	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Q Format Notation

	Building Models
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Block Reference
	Blocks — By Library
	C2400 DSP Chip Support Library (c2400dspchiplib)
	C2800 DSP Chip Support Library (c2800dspchiplib)
	Target Preferences Library (c2000tgtpreflib)
	C28x IQmath Library (tiiqmathlib)

	Blocks — Alphabetical List
	Absolute IQN
	Arctangent IQN
	C24x ADC
	C24x CAN Receive
	C24x CAN Transmit
	C24x From Memory
	C24x PWM
	C24x To Memory
	C28x ADC
	C28x eCAN Receive
	C28x eCAN Transmit
	C28x From Memory
	C28x PWM
	C28x To Memory
	Division IQN
	F2812 eZdsp
	Float to IQN
	Fractional part IQN
	Fractional part IQN x int32
	Integer part IQN
	Integer part IQN x int32
	IQN to Float
	IQN x int32
	IQN x IQN
	IQN1 to IQN2
	IQN1 x IQN2
	LF2407 eZdsp
	Magnitude IQN
	Saturate IQN
	Square Root IQN
	Trig Fcn IQN

	Index

